Search results for "cellular senescence"

showing 10 items of 109 documents

Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

2014

The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifical…

AgingMyeloidReceptor Transforming Growth Factor-beta Type IReceptors Cell SurfaceCell SeparationBiologyProtein Serine-Threonine KinasesTransforming Growth Factor beta1MiceSignaling Lymphocytic Activation Molecule Family Member 1Antigens CDmedicineAnimalsMyeloid CellsRNA MessengerPolyubiquitinTranscription factorCellular SenescenceRegulation of gene expressionMultidisciplinaryUbiquitinationhemic and immune systemsBiological SciencesHematopoietic Stem CellsCell biologyHematopoiesisHaematopoiesismedicine.anatomical_structurePhysiological AgingPhenotypeGene Expression RegulationSignal transductionStem cellCell agingReceptors Transforming Growth Factor betaSignal TransductionTranscription FactorsProceedings of the National Academy of Sciences of the United States of America
researchProduct

The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity

2021

Abstract miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer’s, Parkinson’s, and epilepsy’s …

Agingmedicine.medical_specialtyNeurologyDegenerative Disordermedia_common.quotation_subjectNeuroprotection03 medical and health sciences0302 clinical medicine[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemmicroRNAAnimalsHumansMedicineMyocytes CardiacMolecular Targeted TherapyAxonCellular SenescenceComputingMilieux_MISCELLANEOUS030304 developmental biologymedia_commonNeurons0303 health sciencesbusiness.industryNeurodegenerationAutophagyLongevityNeurodegenerative Diseasesmedicine.diseaseNeuroprotection3. Good healthMicroRNAsmedicine.anatomical_structureGene Expression RegulationCardiovascular DiseasesbusinessNeuroscience030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

MAD2 depletion triggers premature cellular senescence in human primary fibroblasts by activating a P53 pathway preventing aneuploid cells propagation.

2012

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures faithful chromosome segregation during mitosis and its failure can result in aneuploidy. Previously, it was suggested that reduction of the MAD2 gene, encoding a major component of the SAC, induced aneuploidy in human tumor cells. However, tumor cell lines contain multiple mutations that might affect or exacerbate the cellular response to Mad2 depletion. Thus, the scenario resulting by Mad2 depletion in primary human cells could be different and more complex that the one depicted so far. We used primary human fibroblasts (IMR90) and epithelial breast cells (MCF10A) to gain further insight on the effects …

Genome instabilityCyclin-Dependent Kinase Inhibitor p21Cell cycle checkpointMad2PhysiologyClinical BiochemistryMAD2 depletion Aneuploidy Premature cellular senescence TP53Cell Cycle ProteinsBiologyCyclin-dependent kinaseChromosome instabilityChromosomal InstabilityTumor Suppressor Protein p14ARFHumansGene SilencingRNA Small InterferingMitosisCells CulturedCellular SenescenceCell ProliferationCalcium-Binding ProteinsCell BiologyCell Cycle CheckpointsFibroblastsAneuploidybeta-GalactosidaseCell biologyRepressor ProteinsSpindle checkpointSettore BIO/18 - GeneticaGene Expression RegulationMad2 Proteinsbiology.proteinM Phase Cell Cycle CheckpointsTumor Suppressor Protein p53Cell agingSignal Transduction
researchProduct

Coffee silverskin extract protects against accelerated aging caused by oxidative agents

2016

Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector’s sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are col…

0301 basic medicineAgingAntioxidantmedicine.medical_treatmentdermaceuticPharmaceutical ScienceCoffeamedicine.disease_causeAntioxidantsAnalytical Chemistrychemistry.chemical_compound0302 clinical medicineDrug Discoveryoxidative stressFood sciencenutricosmeticCellular SenescenceRoastingChemistryOxidantsChemistry (miscellaneous)030220 oncology & carcinogenesisMolecular Medicinecoffee silverskincoffee silverskin; oxidative stress; UVC radiation; chlorogenic acid; skin health; accelerated aging; nutricosmetic; dermaceuticskin healthCell SurvivalUltraviolet Rayschlorogenic acidOxidative phosphorylationArticlelcsh:QD241-441UVC radiation03 medical and health scienceslcsh:Organic chemistryChlorogenic acidCell Line Tumorparasitic diseasesmedicineaccelerated agingAnimalsHumansPhenolsPhysical and Theoretical ChemistryCaenorhabditis elegansPlant Extractsbusiness.industryOrganic ChemistryAccelerated agingBiotechnologyOxidative StressHaCaT030104 developmental biologyReactive Oxygen SpeciesbusinessBiomarkersOxidative stress
researchProduct

The Role of Osteoprotegerin and Its Ligands in Vascular Function

2019

International audience; The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular comp…

0301 basic medicineAngiogenesismedicine.medical_treatmentReview030204 cardiovascular system & hematologyLigandslcsh:ChemistryTNF-Related Apoptosis-Inducing Ligand0302 clinical medicineReceptorlcsh:QH301-705.5Cellular SenescenceSpectroscopyReceptor Activator of Nuclear Factor-kappa BbiologyChemistryvascular diseaseGeneral MedicineComputer Science ApplicationsProtein Transportmedicine.anatomical_structureCytokineRANKLTumor necrosis factor alphaDisease Susceptibilitymedicine.symptomProtein BindingSignal Transductionmusculoskeletal diseasesProteasome Endopeptidase ComplexEndotheliumendotheliumNeovascularization PhysiologicInflammationCatalysisInorganic ChemistryStructure-Activity Relationship03 medical and health sciencesOsteoprotegerin[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyMyocardiumRANK LigandOrganic ChemistryEndothelial Cells030104 developmental biologylcsh:Biology (General)lcsh:QD1-999osteoprotegerinOPG/RANKL/RANKCancer researchbiology.proteinBlood VesselsBiomarkers
researchProduct

2020

Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.

0301 basic medicineSenescenceCancer ResearchMechanism (biology)CancerCellular senescenceBiologymedicine.disease_causemedicine.diseasePhenotypeNitric oxideCancer treatment03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicineOncologychemistry030220 oncology & carcinogenesismedicineCancer researchCarcinogenesisCancers
researchProduct

Intrinsically determined cell death of developing cortical interneurons.

2009

The cell death of inhibitory neurons, which originate far from the cortical areas to which they migrate during embryonic development, is determined autonomously rather than by competition for trophic signals from other cell types. It has long been known that apoptosis, a form of programmed cell death, eliminates young cells from developing tissues. In the field of neurobiology, it is widely believed that developmental neuronal-cell death results from cellular competition for environmentally derived survival signals that selects for an optimally sized and properly wired population of neurons. This study of developmental cell death in the mouse cortex in vivo, in vitro and after transplantati…

MaleProgrammed cell deathInterneurongenetic structuresCell SurvivalPopulationApoptosisCell CountNeocortexBiologyArticle03 medical and health sciencesMice0302 clinical medicineNeural Stem CellsInterneuronsmedicineAnimalseducationCellular Senescence030304 developmental biologybcl-2-Associated X Protein0303 health scienceseducation.field_of_studyMultidisciplinaryNeocortexMembrane GlycoproteinsCaspase 3musculoskeletal neural and ocular physiologyPyramidal CellsfungiProtein-Tyrosine KinasesCell biologyTransplantationMice Inbred C57BLmedicine.anatomical_structurenervous systemAnimals NewbornInhibitory Postsynaptic PotentialsCerebral cortexbiology.proteinFemaleCell aging030217 neurology & neurosurgeryNeurotrophinNature
researchProduct

Sodium-glucose cotransporter type 2 inhibitors prevent ponatinib-induced endothelial senescence and disfunction: A potential rescue strategy

2021

Background: Ponatinib (PON), a third-generation tyrosine kinase inhibitor (TKI), has proven cardiovascular toxicity, with no known preventing agents usable to limit such side effect. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are a new class of glucose-lowering agents, featuring favorable cardiac and vascular effects. Aims: We assessed the effects of the SGLT2 inhibitors empagliflozin (EMPA) and dapagliflozin (DAPA) on human aortic endothelial cells (HAECs) and underlying vasculo-protective mechanisms in an in vitro model of PON-induced endothelial toxicity. Methods and results: We exposed HAECs to PON or vehicle (DMSO) in the presence or absence of EMPA (100 and 500 nmol/L) or …

Physiologymedicine.drug_classCellPharmacologyAutophagy; Ponatinib; Sodium-glucose cotransporter type 2 (SGLT2) inhibitors; Tyrosine kinase inhibitors; Vascular toxicityTyrosine-kinase inhibitorFlow cytometrychemistry.chemical_compoundmedicineAutophagyHumansViability assayDapagliflozinCellular SenescencePharmacologyTyrosine kinase inhibitorsMatrigelmedicine.diagnostic_testChemistrySodiumImidazolesEndothelial CellsEndothelial stem cellPyridazinesmedicine.anatomical_structureGlucoseDiabetes Mellitus Type 2Sodium-glucose cotransporter type 2 (SGLT2) inhibitorsToxicityPonatinibMolecular MedicineVascular toxicity
researchProduct

Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

2007

International audience; Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substr…

Malemuscle atrophyMESH : Cell Aging[SDV]Life Sciences [q-bio]MESH : Reactive Oxygen SpeciesMitochondrion0302 clinical medicineGlycolysisMESH: AnimalsMESH : Muscle SkeletalMESH : Fatty AcidsCellular SenescencePhospholipidsMESH: Superoxide Dismutasereactive oxygen speciesMESH : Free Radicals0303 health sciencesMESH: Muscle SkeletalMESH : RatsFatty Acidsfatty acid profile of mitochondrial lipidsMESH: Reactive Oxygen SpeciesPyruvate dehydrogenase complexMESH: Fatty Acidsmitochondria[SDV] Life Sciences [q-bio]BiochemistryMESH: Cell AgingMESH: CalciumMESH : MitochondriaCell agingPyruvate decarboxylationmedicine.medical_specialtyFree RadicalsMESH: RatsCellular respirationMESH: MitochondriaMESH : MaleCell Respirationchemistry.chemical_elementOxidative phosphorylationBiologyCalciumMESH : Rats WistarMESH : Phospholipids03 medical and health sciencesMESH: Free RadicalsInternal medicinemedicineAnimalsMESH : Superoxide DismutaseRats WistarMuscle SkeletalMESH : Calcium030304 developmental biologyMESH: Phospholipidscalciumpermeability transition poreSuperoxide Dismutaseagingaging;calcium;fatty acid profile of mitochondrial lipids;mitochondria;muscle atrophy;permeability transition pore;reactive oxygen species;Animals;Calcium;Cell Aging;Cell Respiration;Fatty Acids;Free Radicals;Male;Mitochondria;Muscle;Skeletal;Phospholipids;Rats;Wistar;Reactive Oxygen Species;Superoxide DismutaseCell BiologyMESH: Rats WistarMESH: MaleRatsEndocrinologychemistryMESH : Cell RespirationMESH : AnimalsMESH: Cell Respiration030217 neurology & neurosurgery
researchProduct

Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening

2018

Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of …

0301 basic medicineAgingTelomeraseTelomere-Binding ProteinsClinical BiochemistryCell Cycle ProteinsBiologymedicine.disease_causeBiochemistryDyskeratosis CongenitaDyskerin03 medical and health sciencesTelomere HomeostasisRibonucleoproteins Small NucleolarmedicineHumanslcsh:QH301-705.5TelomeraseCellular SenescenceTelomere ShorteningRibonucleoproteinlcsh:R5-920TelomeropathiesOrganic ChemistryNuclear ProteinsShelterinmedicine.diseaseMolecular biologyTelomereCell biologyOxidative Stress030104 developmental biologylcsh:Biology (General)DNA damageRNA InterferenceAntioxidantlcsh:Medicine (General)Oxidative stressDyskeratosis congenitaResearch PaperHeLa CellsRedox Biology
researchProduct